

International Symposium Qualification of dynamic analyses of dams and their equipments and of probabilistic seismic hazard assessment in Europe 31th August – 2nd September 2016 – Saint-Malo

AFPS Working Group

I. Grigoratos, C. Beauval, PY. Bard, M. Belvaux

Session 1: Qualification of Probabilistic Seismic Hazard Assessment

Discussing SHARE PSHA results for France

SUMMARY

1.CONTEXT

The SHARE project Comparison with seismic zonation map for France The scope

2.ANALYSIS OF SHARE MODEL HYPOTHESIS

SHARE logic tree On GMPEs On source models On zonation On activity parameters On M_{max}

3.SENSITIVITY STUDY

On $M_{\text{max}}\,$ and $M_{\text{min}}\,$ Uncertainty on earthquake recurrence

SHARE project (2009-2013)

Time-independant hazard model for Europe for return periods 73 to 4975 years PGA₄₇₅: 0.03*g* – 0.30*g* for spectral periods up to 4s **Reference model for the** Peak Ground Acceleration [g] revision of the EC for seismic 10% Exceedance Probability in 50 years design of building Moderat Software OpenQuake (GEM) **Documentation** Deliverables, Shapefiles, Input files (<u>www.efehr.org</u>) (Many key information missing) eak Ground Acceleration le

SHARE

Peak Ground Acceleration for a return period of 475 yrs

SEISMIC HAZARD HARMONIZATION IN EUROPE

(Woessner et al. 2013)

3

High Hazard

Regulatory seismic zonation

(National Decrees No. 2010-1254 and 2010-1255)

Aléa	Mouvement du sol
très faible	accélération < 0.7 m/s ²
faible	0.7 m/s² ≤ accélération < 1.1 m/s²
modéré	1.1 m/s² ≤ accélération < 1.6 m/s²
moyen	1.6 m/s ² ≤ accélération < 3.0 m/s ²
fort	accélération ≥ 3.0 m/s²

- Parts of the Alps and Pyrenees are classified in "medium" hazard level
 - + Guadeloupe, Martinique

PSHA maps: PGA_{475 yrs}

MEDD (2002)

SHARE (2013)

The hazard calculated in SHARE is generally lower than the hazard from the 2002 study.

ratios PGA₄₇₅ $\frac{SHARE}{MEDD(2002)}$

The hazard calculated in SHARE is generally lower than the hazard from the 2002 study.

The scope

- Identify, understand and analyse the assumptions, methods and final decisions, that produced the SHARE PSHA results in France.
- Quantify some uncertainties on the seismic source model that SHARE did not take into account

Within the framework of an **AFPS Working Group** for SHARE results in France

SUMMARY

1.CONTEXT

The SHARE project Comparison with seismic zonation map for France The scope

2.ANALYSIS OF SHARE MODEL HYPOTHESIS

SHARE logic tree On GMPEs On source models On zonation On activity parameters On M_{max}

3.SENSITIVITY STUDY

On $M_{\text{max}}\,$ and $M_{\text{min}}\,$ Uncertainty on earthquake recurrence

SHARE logic tree - epistemic uncertainties

Output of SHARE logic tree

Uniform Hazard Spectrum (at a specific return period and site)

Hypothesis on GMPEs

The whole Europe was divided into 6 major tectonic "superzones"

Hypothesis on source model

Hypothesis on zoning

• The choice of zoning is decisive for the PSHA

• Only a subset of faults (activity criteria) => limited influence for T = 475 yrs

Hypothesis on activity parameters

In each source zone, SHARE developed a Gutenberg-Richter curve, based on the SHEEC earthquake catalog (years 1000-2007) Stucchi *et al.* (2013) ; Grünthal *et al.* (2013)

Seismic activity characterised by **a** and **b**:

Higher b-values indicate more small events relative to large events.

Hypothesis on activity parameters

Number of events used to derive G-R parameters

Few data because the quite high M_{min} of completeness

As a result, most of the *a*, *b*-values have been fixed (expert opinion) and may be questioned

Hypothesis on activity parameters

As a result, the uncertainty related to the recurrence parameters is not propagated.

Hypothesis on M_{max}

M_{max} = maximum magnitude that may occur in a region

Treatment of uncertainty on M_{max}

 Instead of a node in the logic tree, a mean recurrence curve was applied, (weighted combination of the 4 recurrence curves)

As a result, the uncertainty related to the M_{max} is not propagated.

SUMMARY

1.CONTEXT

The SHARE project Comparison with seismic zonation map for France The scope

2.ANALYSIS OF SHARE MODEL HYPOTHESIS

SHARE logic tree On GMPEs On source models On zonation On activity parameters On M_{max}

3.SENSITIVITY STUDY

On $M_{\text{max}}\,$ and $M_{\text{min}}\,$ Uncertainty on earthquake recurrence

Sensitivity on M_{min} and M_{max}

Sensitivity on M_{min} and M_{max}

 M_{min} reduced by 0.6

a_{SHARE}-a_{test}

a_{SHARE}

max reduced by ore

Impact up to -50%. Increase > 0.02g in a significant portion of France. Max increase is 0.035g Impact up to 7%. Max decrease is 0.006g

Sensitivity on M_{min and} M_{max}

- Even for return period = 4975 yrs, the underestimation of hazard, when reducing M_{max} by 0.6, never exceeds 0.05g, neither for PGA nor for SA(1s).
- Although generally the M_{max} draws more attention than the M_{min}, it seems that for France the choice of M_{min} is more crucial than the choice of M_{max}, for return periods < 5000 yrs and low spectral periods (T < 0.3s).</p>

Alternative EQ recurrence modeling

 Go back to the original SHARE earthquake catalog (=SHEEC) and derive recurrence parameters with associated uncertainties

Two recurrence models are defined: a upper and lower bound. The seismic hazard can now be provided with associated uncertainties.

Uncertainty on EQ recurrence

Lourdes UHS 475 yrs

PGA 475 yrs for 4 cities

The upper and lower bounds highlight the variability of the results (up to 50%), specifically in regions of low seismicity where data can very scarce.

Several SHARE input errors

Normalized difference

Absolute difference

Main conclusions

- Analysis of SHARE source model:
 - Inconsistencies in SHARE's input files lead to 10% larger PGA₄₇₅ for France
 - SHARE's catalog provides too few data to derive G-R parameters
 - SHARE's earthquake recurrence model strongly relies on expert opinion
- Impact on hazard of uncertainties related to the source model for France (PGA, 475yr):
 - taking into account the uncertainty on *b*-value: up to 50%
 - magnitude M_{min}: up to 50%
 - magnitude M_{max}: up to 7%

The uncertainties on the seismic source model should ALWAYS be quantified and their impact on the hazard should be estimated.

THANK YOU FOR YOUR ATTENTION