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What is « seismic hazard » ?

� Tell me what will happen

� Tell me what can happen

� Tell me what’s already happened and is likely to occur again

� Tell me what the regulation tells me to do
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the components of the hazard
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Probabilistic Method
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date M
19-juil-63 2.1
04-févr-61 6.4
25-août-68 5.2
09-nov-73 5.4
06-déc-63 4.8
10-juil-67 6.1

26-août-67 4.2
03-janv-68 4.0
26-nov-59 6.8
12-mai-76 5.1
10-avr-75 4.1

12-mars-82 2.6
… …

Earthquake catalog

Site

Attenuation :
Log(a) = f(M, D) +/- σ

Seismic
source

D

Occurrence Model 

Log(N) = a - b.M
Gütenberg-Richter
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Probabilistic Method

� What is the annual probability that the 

acceleration on the site exceeds the value of:

6

A = 0.1 g
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Probabilistic Method
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M M+dM N(M,M+dM) Acc P(a>A) N(a>A)

5.4 5.8 0.0008 0.082 0.3827 0.0003

Magnitude 
range

Number of earthquakes 
in the class

Log(N) = a – b.M Median 
Acceleration 
Acc = f(M,R)
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Probabilistic Method
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M M+dM N(M,M+dM) Acc P(a>A) N(a>A)

3.0 3.4 0.1903 0.015 0.0021 0.0004

3.4 3.8 0.0758 0.019 0.0075 0.0006

3.8 4.2 0.0302 0.026 0.0225 0.0007

4.2 4.6 0.0120 0.035 0.0572 0.0007

4.6 5.0 0.0048 0.046 0.1247 0.0006

5.0 5.4 0.0019 0.061 0.2342 0.0004

5.4 5.8 0.0008 0.082 0.3827 0.0003

5.8 6.2 0.0003 0.109 0.5511 0.0002

6.2 6.6 0.0001 0.145 0.7106 0.0001

6.6 7.0 0.00005 0.194 0.8369 0.00004

N = 0.004

Return Period :

T = 1/N = 250 years

What is the annual probability that the acceleration 
on the site exceeds the value of:
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Probabilistic Method
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Probabilistic Method
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Probabilistic Method
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SismotectonicZonations



Probabilistic Method
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Hazard Map

Acceleration cm/s² T=475 ans
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Probabilistic Method
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P = Annual probability of exceeding a given value

Probability of exceeding the given value

A LEAST ONCE IN « D » YEARS

1 - (1- P)D = RISK

=>   P = 1 - (1 - R)1/D

Poisson process: P = 1 - e-N = 1 - e-1/T T = -D/Ln(1-R)

Life Time (D)

10 50 100

Risk (R)

0.1 % 9 995 49 975 99 950

1 % 995 4 975 9 950

10 % 95 475 949

63 % 10 50 100



Probabilistic Method: epistemic uncertainties
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Probabilistic Method: epistemic uncertainties
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Probabilistic Method: epistemic uncertainties
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Logic Tree
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Probabilistic Method: epistemic uncertainties
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Logic Tree
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zoning catalog
Occurrence 

Model
Mmax

Attenuation 
Model

k calculations 
corresponding to 
the k branches 
of the logic tree, 
each result with 
it’s weight.

Probabilistic Method: epistemic uncertainties
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Probabilistic Method: epistemic uncertainties
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UHS : uniform hazard spectrum
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� The probabilistic calculation is done for each spectral frequency 

independently

� Each point of the UHS has the same probability of exceedance

� An UHS doesn’t correspond the spectrum of a real earthquake : the 

different parts of the UHS is generated by different types of earthquakes.



UHS : uniform hazard spectrum
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PSHA : some difficulties
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� The availability of data, validated, with known uncertainties.

� The meaning of s in the GMPEs ? 

� How to take into account expert judgment / how to weight branches in 

the logic trees ?

� How to incorporate site effect into the probabilistic scheme ?

� How to set the Maximum magnitude ? Is the Gütenberg-Richter model 

still valid for rare events ?



Conclusion of part 1
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� The (probabilistic) seismic hazard can not be a single value

� Several choices have to be done :

� Return period

� Level on confidence

� Avoid confusion between :

� The probability for an earthquake of a given magnitude to occur in the 
region,

� The probability for a given level of ground motion to occur on the site.



Conditional Spectra : rigorous use of the UHS
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� What is the return period of a UHS?

A UHS is obtained by the observation of seismic activity during a given return period         

(here 10 000 years)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10 000



Conditional Spectra : rigorous use of the UHS
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� What is the return period of a UHS?

For a 10 000y hazard study, the UHS is the max of the recorded spectra during 10 000 year of 

observation
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Conditional Spectra : rigorous use of the UHS
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� What is the return period of a UHS?

A UHS is not a single even

Using the UHS as one single even leads to a much higher return period!
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Conditional Spectra : rigorous use of the UHS
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� What is the return period of a UHS?

Using the UHS as one single even leads to unphysical accelerometric time motion

+ + + =    ????



Conditional Spectra : rigorous use of the UHS

28Probabilistic seismic hazard assessment |  2016

� Concept of the conditional spectra method

To transform the UHS in several physical scenarii
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Conditional Spectra : rigorous use of the UHS
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� The method of the Conditional Spectra
� Go back to more physic input motion than the broad band spectra provided by modern codes

� By dividing the spectrum in several scenarii, lead to a higher number of computations 

� Extensively published

� "Conditional Spectra" Lin & Baker - Encyclopedia of Earthquake Engineering

� Baker, 2011. "Conditional Mean Spectrum: Tool for ground motion selection." Journal of Structural 
Engineering,

� Already used for industrial studies

� Diablo canyon nuclear power plant

� Partial conclusion: 

never use the hazard from a probabilistic seismic assessment without 
coming back to realistic



Qualification of PSHA : Bayesian inference
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� Context & Motivations

� In the specific case of moderate and low seismicity areas, the lack of strong motion data 

lead to select an attenuation model built on data coming from high seismicity regions. 

� Surprisingly, in that context of lack of data, the local seismic recording are not frequently 

used to calibrate the attenuation model.

� The updating technique hereinafter try to answer this issue by a systematic method



Low return period

10 000 Years

Qualification of PSHA : Bayesian inference
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� Example of uncertainty (Yucca Mountain)

First observation: the uncertainties are extreme, at high & LOW return period

Usually, at low return period, the uncertainties à limited by the fact that this type of events 

are frequent and consequently well known � it highlights the fact that local data are not 

used to fit the hazard assessment



Qualification of PSHA : Bayesian inference
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However there is local data, not used in PSHA

� Exemple 1: the French broadband and accelerometric permanent network  

� more than 100 stations,

“PSHA Updating Technique with a Bayesian 
Framework: Innovations” 
N. HUMBERT et Al 2015



Qualification of PSHA : Bayesian inference
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However there is local data, not used in PSHA

� Exemple 2: CEA velocimetric network 

� since 1950 - 40 velocimetric stations



Qualification of PSHA : Bayesian inference
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However there is local data, not used in PSHA

� Exemple 3: Historical  feedback: 

� Sisfrance: 1300 � 2007

� 6000 earthquakes

http://www.sisfrance.net/

UPDATING OF A PSHA BASED ON BAYESIAN INFERENCE
WITH HISTORICAL MACROSEISMC INTENSITIES
E. Viallet(1), N. Humbert(2), P. Mottier(3)



Qualification of PSHA : Bayesian inference
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However there is local data, not used in PSHA

� Exemple 4: Geological unstable structures: 



Qualification of PSHA : Bayesian inference
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Methods of updating are described in 20 publications presented in PAVIE 

� Nicolas Kuehn - Non-Ergodic Seismic Hazard: Using Bayesian Updating for Site-Specific 

and Path-Specific Effects for Ground-Motion Models 

� Roger Musson- Statistical tests of PSHA models.  

� Pierre Labbé,  - A method for testing PSHA outputs against historical seismicity at the 

scale of a territory; example of France

� Jacopo Selva- Probabilistic Seismic Hazard Assessment: Combining Cornell-Like 

Approaches and Data at Sites through Bayesian Inference.

� …..

Recommendation of OECD (PAVIE 2015)

Recommendation 2.1 – A state-of-the-art PSHA should include a testing 
(or scoring) phase against any available local obse rvation (including any 
kind of observation and any period of observation) and should include 
testing not only against its median results but als o against its whole 
distribution (percentiles).
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