

International Symposium Qualification of dynamic analyses of dams and their equipments and of probabilistic assessment seismic hazard in Europe 31th August – 2nd September 2016 – Saint-Malo

N. Matsumoto & H. Yoshida, T. Tsukada,

M. Kashiwayanagi & H. Okumura

Session 2: Performance of CFRD & AFRD Performance and analysis of CFRD and AFRD during earthquake

Design earthquake & computation

Terminology of design earthquake motions

Performance criteria	Japan	Overseas
Mostly elastic limit	Level 1	Operating basis earthquake
No release of		Seismic design earthquake(SDE)
uncontrolled water	Leverz	MCE or SEE

Analysis and design methods in regulation and practice

Methods	Japan	Overseas	
Seismic coefficient	Used for Level 1; Most dams designed	Obsolete,	
method (pseudo	by SC method have shown satisfactory	Not state-of-the	
static)	performancesofar,*exceptpoorlycompactedearthfilldams,	arts	
	appurtenant structures and dams in		
	future		
Modified seismic	(Sometimes Used) Natural period and	(used in China)	
coefficient	amplification are considered		
method			
Dynamic analysis,	Used to evaluate the safety for Level 2	State-of-the arts	
Time history or	But, is it really reliable?		
FEM or FDM	Material properties are clear?		

SUMMARY

- 1. Ishibuchi CFRD
- 2. Yashio AFRD
- **3. Numappara AFRD**
- **4. CONCLUSIONS**

Ishibuchi Dam CFRD

Typical cross section

Ishibuchi Dam CFRD

Typical cross section

Where the dam and fault were?

- Ishibuchi dam
- Causative Fault

Accelerograms

Dam crest

Concrete face just after the Quake

Leakage with time

Plan and Elevation

10

Deformation due to the quakae

TITLE OF THE SLIDE

Strength parameters for rockfill

- $\phi_0 = \phi_{max} 10.9 \log(\sigma_n / 50)$
- here,
- ϕ_{max} =52.1° for rockfill
- ϕ_{max} =60.0° for rubble work
- σ_n = mean confining pressure in kPa

Horizontal permanent deformation

Vertical permanent defomation

YASHIO AFRD

1. Introduction

2. Outline of the Yashio dam

(a)Spesification Shiobara power plant

Purpose	Hydropower (PSPP)
Capacity	900 MW
Completion	1995

raome	dann
Dam Type	AFRD
Dam height	90.5m
Crest length	263.0m
Dam volume	$2.1 imes k m^3$
Reservoir capacity	$11.9 \times \text{Mill.} \text{ m}^3$

Yashio dam

3. Observation during and after the earthquake (a) Acceleration (gal)

Max. Acceleration at the crest and inner part of the Yashio dam

	1	2	3	4	6
Stream	174	253	252	66	125
Dam axis	157	185	104	66	132
Vertical	105	175	156	43	115

Max Acceleration in the bed rock

	5
Stream	43
Dam axis	53
Vertical	45

(b) Cracks in the Asphalt Facing

Maximum water leakage through the cracks of the upper impermeable layer was about 300 litter/min.

Fig – Dam front view (asphalt facing)

Tensile strain capacity of asphaltic concrete with strain rate and temperature

4. Study on the crack mechanism

i. Reproduction analysis

A reproduction analysis using a seismic wave record in the bedrock to pursue the crack mechanism: A - A cross section

Boundary condition of this analysis

- Displacement of the base of the model was fixed.
- Displacement of the side of the model were not fixed.
- Hydrodynamic pressure : Zanger's formula.

□ Result of reproduction analysis, acceleration

ii. Detail structure at the dam crest

These things were confirmed by the result of the reproduction analysis.

Physical model test on shake table

Figure 11. Concentrated strain by estimates at the actual crack location.

5. Repair works

Performance and analysis of CFRD and AFRD during 2008-2011 earthquakes | 2016

NUMAPPARA AFRD

SESIMIC MONITORING

INDUCED INCIDENTS

REMEDIAL WORKS

CONCLUSIONS

- The face is rigid the fill is flexible. There has been a wide spectrum of views; the faced rockfill dams can resist strong earthquake motions? Three dams (Ishibuchi, Yashio and Numappara) showed the fundamentally satisfactory performance during strong earthquakes.
- The asphalt face of AFRD might be cracked under low ambient temperature condition when subjected to strong motions.

• The cracks of the asphalt facing emerged at local areas of the joints of curve of crest pavement road in Yashio AFRD and the boundary between the embankment and the excavated foundation in Numappara AFRD. The leakages from the cracks were not much to threat the safety of the dam and they were repaired successfully afterwards. The prudent design is necessary for the junction of concrete structures and the asphalt facing. The compaction of rockfill is most important to minimize deformation due to earthquakes. The adequate outlet structures can facilitate remedial works by prompt dewatering after earthquakes.

THANK YOU FOR YOUR ATTENTION