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FRAMEWORK

Simplified methods to get seismic coefficients/damages are attractive...
* Easy
* Fast
» Affordable

... especially for seismic assessment of embankments...

e Large length along rivers

... but are they reliable ?

What is the possible safety margin to consider ?
NO LIQUEFACTION
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SARMA’S METHOD (1/3)

= Assumptions:

oA

Earth dam h;
pll Vsl Y
: A

Soil layer P, Vs, h,

Y
Rigid bedrock

ainput (t)

= Motionequations:

0%u, 10u, 1 )
32 (v, t)+ 33y . t)= vz Uy + Cuy + appur ()
1
0%u, 1 N .
ay2 . t)+= W (uy + Qup + Qinput ()
2

Linear viscoelastic, viscous
damping (same damping in the ;Y A
dam and in the layer of h1
foundation)

Rigid bedrock

Shear beam approach: only
horizontal displacements and
simple shearing deformations Y
+ uniform shear strains across ainput(t)
- —
the dam

P1Vsy (

impedance contrast)
p2Vs2

m =

_ VS]_ hz

= — (contrast in time to cross the layer/embankment)
211
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SARMA’S METHOD (2/3)

= Main analytical results:

*  Resonance frequencies:
Enl5 where: 2220 — m tan(q@,)

For the nt" mode: w,, =
on 1 Ji(@y)

Mode sha pes: @,,(y) in the embankment and ¥, (y) in the layer for the n™" mode
* Displacements (and then accelerations):

(6 = Z p(San(8) and w(y, ) = Z () San(6)

= Design curves:

Deduced from analytical results, considering several combinations of parameters m and
q, 9 real accelerograms and a viscous damping of 20%

 Example for m=0.5 and g=0.75:

N
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Seismic coefficient
3
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SEISMIC COEFFICIENTS FOR ONE-PARAMETER SLICING WEDGE
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SARMA’S METHOD (3/3)

= Three main attractive features of this simplified method:
e |tisnotlimitedto the few cases solved to get the design curves

e |ttakes into account an underlying layer of soil (mostly the case for
embankments)

|t may be possible to improve it by modifying some assumptions
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ISSUES OF THIS WORK

=  Whatare the possible limits of the assumptions made in Sarma’s method ?
= |sthe dynamic behavior predicted by Sarma’s method realistic ?

= What possible safety margin could be associated to this method?

Limits imposed

=  Work limited to dynamic response (strains and accelerations) 2 no
estimation of damages (displacements)

= Direct use of the analytical results obtained by Sarma—> no utilization of
the design curves deduced from the analytical resolution
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2. METHODOLOGY

- Comparison between numerical results and results
given by Sarma’s method
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METHODOLOGY

PARAMETRIC STUDY (1/3)

= 18 geometries for the comparison :
e 6thicknesses of soil layer : 3m, 10m, 30m, 100m, 300m and 900m
e 3values of Vsy; in soil layers : 125m/s, 250m/s and 500m/s

® _®| plock ? U51=3ﬂﬂlllf5‘

e oS
.a| P1=2200kg/m
D B]C‘Chs vl_ﬂ25

{1=2.5%

3

h1=10m

Vs2(z) (Vs30=125m/s, 250m/s, 500m/s)

|;112=22lf!|.'lkgfm3 Soil Iayer
v2=0.25

{,=2.5%

hz=3m, 10m, 30m,
100m, 300m, 900m

VS10a=800m/s Elastic bedrock
Proa=2500kg/m>
Vm¢k=u.25
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METHODOLOGY

PARAMETRIC STUDY (2/3)

= Velocity gradients:

Vs, (z) = Vs, + (Vs - Vs,)
0
Z,=0m ; z,=1000m -100
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.- example of
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Revisiting Sarma’s method| 2016

10



METHODOLOGY

PARAMETRIC STUDY (3/3)

" [Inputaccelerograms:
e 26 real accelerograms (horizontal component)

e Fitted on French design spectra (based on Eurocode 8): design spectra

Z4D, Z4C, Z4B and Z4A (6 or 7 accelerograms per design spectra)
e Magnitudefrom4.5to6
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Period (s)
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METHODOLOGY

NUMERICAL ANALYSIS (1/2)

= 2D spectral-element solver SPECFEM 2D

= Spectral element method in space (polynomial order N=4)

= Explicit 2" order finite-difference method in time

= Mesh: quadrangles, size function of Vs value 2 max. frequency=30Hz

Elevation: Om .

Min. elevation
of soil layer: —
-900m

Elevation of
input motion: —
-1200m

Example: Layer of 30m, Vs30=250m/s

2000m

Embankment " T>_

Soil layer

é Bedrock

-

Input motion

Absorbing boundary conditions
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METHODOLOGY

NUMERICAL ANALYSIS (2/2)

= Receivers

Data are saved at each receiver

Horizontal velocity: V.

. . . dau. du
Spatial derivatives: —= and Ex
_ 1,dU, | dU
- Shear strain: y == (—= +—
2%dx | dz

= |mpulse response to a Dirac fonction

_Intime domain:

Displacement
T .

— S
A 1 1 1
0.10 0.20 0.30 0.40
Time (s)

Elevation (m)

0L
s~ Soil layer
20!
251

-30

10 -

-50 0 50
Distance to symmetry axis (m)

In frequency domain:

L.

107 10° 10" 25Hz 107
Frequency (Hz)

= Convolution with the 26 accelerograms = accelerations and strains in each case at
each receiver
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METHODOLOGY

APPLICATION OF SARMA’'S METHOD

= Use of analytical results from Sarma’s method
= Use of the 26 choosen accelerograms as inputs
= No velocity gradient (assumption of an homogenous layer) = use of Vs;, values

* No lateral variations in the response = the motion is calculated every 1m along
the vertical axis

Iy v
Embankment h; hy

Soil layer

Rigid bedrock

E!im:llu’c(t)
—
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3. RESULTS
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RESULTS

SHEAR STRAINS (1/3)

= Main results shown by numerical analysis

Example: peak shear strain reached at each point (not synchronous) — mean values (6 accelerograms)
for the design spectra Z4B (PGA = 0.29g)

Peak shear strain (%)

Vs(m/s) 10 0.15
0 200 400 600 800
10 -
—125m/s 5
5 - —embankment
E 0.1
0 T ' T 1 — 0
=
Qo
5 \ 2|
% 10 - E =l
= ' 0.05
15 - .
10 8
20 -
-25 - -15 0
0 10 20 30 40
30 - Distance from symmetry axis (m)
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RESULTS

SHEAR STRAINS (2/3)

= Main results shown by numerical analysis

Example: peak shear strain reached at each point (not synchronous) — mean values (6 accelerograms)
for the design spectra Z4B (PGA = 0.29g)

Peak shear strain (%)

Vs(m/s) 10 —0.15
0 200 400 600 800
10
—500 m/s 5
5 ——embankment
E 10.1
0 — 0
=
3
5 \ 2
i €2 0.05
-15
-10
20
25 -15 0
0 10 20 30 40
-30 Distance from symmetry axis (m)
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RESULTS

SHEAR STRAINS (3/3)

= Main results shown by numerical analysis

e Peak shear strains remain globally the same at a given elevation (to the advantage of the
shear beam assumption)

e  Peak shear strains are mostly controlled by shear modulus values (<-> Vs), for a given
loading level

e Inall non-linear constitutive models, damping is related to shear strains = for strong
loadings, it may be unrealistic to consider an homogeneous viscous damping (the same in
the embankment and the soil layer)
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RESULTS

ACCELERATIONS: COMPARISON WITH SARMA (1/4)
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RESULTS

ACCELERATIONS: COMPARISON WITH SARMA (2/4)

Quantification of the error on peak acceleration at crest:

Peak acceleration at crest from Sarma

Ratio R = , , .
Acrest — Peak acceleration at crest from numerical analysis

Mean value (all cases): Ry ..., = 1.33, 0 = 0.37

2 T r 2

1.5 ] 15| \ - L5 (-
Y
| -

b | ) E =
1Y k i
qE X 5K 5 IX |
o " (= ! e N
/9 c b =
—_— —_— —
= = £ 4
b |
]__:-.._.-—__.-— _________ - = ]_:: ___________ - [Rmpp——— :- __________________
0.5|
0.5! 0.5 | | L L I i (I
Reference Z4D Z4C Z4B Z4A Reference3m 10m 30m 100m 300m 900m Reference  125m/s 250m/s 500m/s
Rarest Design spectra Raires: Thickness of the layer Raprest Vs3g in the layer
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RESULTS

ACCELERATIONS: COMPARISON WITH SARMA (3/4)

= Quantification of the error on peak acceleration of a possible sliding block:

Peak acceleration of the block from Sarma

Ratio R =
Ablock " peak acceleration o f the block fromnumerical analysis

o h
/\| 1 Ihl alpha Ry

0.5 1.40 0.39

ah, | 1 1.44 0.38
1
1.2 1.49 0.39
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RESULTS

ACCELERATIONS: COMPARISON WITH SARMA (4/4)

=  Main results shown by the comparison:

 Trend (attenuation/amplification) of the dynamic response is well caught
by Sarma’s simplified method

e Sarma’s method leads globally to an overestimation of peak acceleration

at crest (by 30% in average) and mean acceleration of a possible sliding
block (by 40-50% in average).

 The discrepancies may be explained by:
e The assumption of a rigid bedrock

e The assumption of an horizontal motion (far from the reality for
higher modes)

 The non-consideration of the velocity gradient in the soil layer
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3. CONCLUSIONS
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CONCLUSIONS

MAIN RESULTS

= About assumptions made in Sarma’s method:

Rigid bedrock = infinite impedance contrast, greater amplification, no radiation of
the energy in the bedrock

Shear beam assumptions = less accurate at higher frequencies. According to
Gazetas(1987), this can explain the discrepancies regarding peak acceleration at
crest.

Homogeneous viscous damping = the damping could be different in the
embankment and the soil layer, according to the shear modulus values

= About the dynamic behavior obtained when using Sarma’s method

Behavior realistic: trend of attenuation/amplification similar to numerical analysis

= About the possible safety margins (on peak accelerations):

In most cases, larger amplification of the input especially for soil layers relatively
thin (3 to 30m)

In average, the seismic coefficient is overestimated by a factor of 50%

The thickness of the layer has a large influence on the possible safety margin
(greater effect of the velocity gradient ?)
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CONCLUSIONS

LIMITATIONS AND PERSPECTIVES

Impact of the velocity gradient ?
—> Adapt Sarma’s equations to take into account a velocity gradient ?

Effect of compaction of the layer by the embankment ?
—> Consider Vs values in the layer more realisticin numerical analysis

- InSarma’s simplified method, it is not specified where should be chosen the Vs(z) profile
(far or under the embankment)

Model damping in numerical analysis ?
- Major impact on the results: large attenuation, especially for thicker layer
- Not realistic to always choose the same value in the embankment and the soil layer
- Linear equivalent analysis to find a more realistic value of damping ?

Design curves

- Sarma’s design curves are developed for a viscous damping of 15%-20% (global value to
also take into account radiation of energy)

-  What would be the results of a comparison between Sarma’s simplified method (design
curves) and numerical results (with a damping more realistic) ?
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