Conité français des barrages et réservoirs International Symposium Qualification of dynamic analyses of dams and their equipments and of probabilistic assessment seismic hazard in Europe 31th August – 2nd September 2016 – Saint-Malo

> Luc Boutonnier Dino Mahmutovic

Session : Qualification of seismic analysis of embankment dams Dynamic analysis of Aratozawa dam including the effect of occluded air and pore fluid compressibility

SUMMARY

1.Introduction

2. Presentation of Aratozawa Dam

3. Dynamic analysis of Aratozawa dam

4.Conclusion

Introduction

Dynamic analysis of aratozawa Dam | 2016

Earthquakes and Japan

Illustration of tectonic plate movement in Japan

Japan \rightarrow an area of high seismicity with a long history of earthquake

Many dams in Japan

Localisation of main dams in Japan

Map of all types of dams

HELDNGJIANG

Map of earthfill dams

Japan \rightarrow many acceleration history measurements available during earthquakes

JCOLD / CFBR collaboration

Share data and experiences in design

Improve the calculation procedures using data from real seismic events with high energy earthquake

Aratozawa Dam

Localisation of Aratozawa dam

http://maps.ontarget.cc/dams/en.html

Localisation of Aratozawa dam

http://maps.ontarget.cc/dams/en.html

Geometry of Aratozawa dam (Ohmachi and Tahara, 2011)

Main earthquake (Ohmachi and Tahara, 2011)

No	Date (time)	Magnitude M	Peak acceleration at gallery (m/s ²)
1	1996.8.11(3:12)	5.9	0.28
2	1996.8.11(8:10)	5.7	0.33
· · 3	1996.8.11(15:01)	4.8	Sul kity for the 0.30 (Anterwork)
4	2008.6.14(8:43)	7.2	10.24
5	2008.6.14(9:00)	4.7	0.99
5 6	2008.6.14(* 9:01)	4.0	4.82
16	2008.6.14(12:10)	4.7	0.79
19	2008.6.14(19:11)	4.1	2.29
- 36	2008.6.16	5.3	0.76
62	2008.6.19	3.2	0.36
118	2008.7.18	3.0	0.53
127	2008.7.24	•.•. 6,8 • • •	0.24
137	2008.7.29	3.9	0.90
149	2008.8.4	3.5	0.78
169	2008.9.25	4.1	1.19
176	2008.12.15	3.4	0.39
183	2009.7.1	3.2	0.02
189	2009.8.4	1.6	0.02

→ Estimation of seismic wave velocity Vs :

 $V_s = rac{distance\ between\ 2\ acceloremeters}{delay\ between\ 2\ acceloremeters}$

Main earthquake episods(Omashi 2011)

No	Date (time)	Magnitude M	Peak acceleration at gallery (m/s ²)
1	1996.8.11(3:12)	5.9	0.28
2	1996.8.11(8:10)	5.7	0.33
: 3	1996.8.11(15:01)	4.8	Sul kits for the 0.30 (Antheorem
÷ 4	2008.6.14(8:43)	7.2	10.24
5	2008.6.14(9:00)	4.7	0.99
1917 6 1	2008.6.14(* 9:01)	4.0 · · ·	4.82
16	2008.6.14(12:10)	4.7	0.79
19	2008.6.14(19:11)	4.1	2.29
36	2008.6.16	5.3	0.76
62	2008.6.19	3.2	0.36
118	2008.7.18	3.0	0.53
127	2008.7.24	6,8	0.24
137	2008.7.29	3.9	0.90
149	2008.8.4	3.5	0.78
169	2008.9.25	4.1	1.19
176	2008.12.15	3.4	0.39
183	2009.7.1	3.2	0.02
189	2009.8.4	1.6	0.02

At the end of the earthquake:

Main earthquake episods

No	Date (time)	Magnitude M	Peak acceleration at gallery (m/s ²)
1	1996.8.11(3:12)	5.9	0.28
2	1996.8.11(8:10)	5.7	0.33
: 3	1996.8.11(15:01)	4.8	N. K.Y. 1969/K 0.30 (Ketakase).
4	2008.6.14(8:43)	7.2	10.24
5	2008.6.14(9:00)	4.7	0.99
6		4.0	4.82
16	2008.6.14(12:10)	4.7	0.79
19	2008.6.14(19:11)	4.1	2.29
36	2008.6.16	5.3	0.76
62	2008.6.19	3.2	0.36
118	2008.7.18	3.0	0.53
127	2008.7.24	6,8	0.24
137	2008.7.29	3.9	0.90
149	2008.8.4	3.5	0.78
169	2008.9.25	4.1	1.19
176	2008.12.15	3.4	0.39
183	2009.7.1	3.2	0.02
189	2009.8.4	1.6	0.02

At the end of the earthquake:

u_w V_s

How to explain these phenomena?

Anisotropy?

Irreversible plasticity?

Construction

Main stages in the numerical model calculations

Store	Undroulie	Mechanical	Comment
Stage	Hyuraunc	calculation	

Construction

Numerical construction by step

Initial state of soil after compaction

$$\sigma'_{vini} = -u_{w,ini}$$

$$\sigma'_{h} = K0 * \sigma'_{v}$$
$$K0 = (1 - \sin(\phi')) * \left(\frac{\sigma'_{p}}{\sigma'_{vini}}\right)^{0.5}$$

Construction

Skeleton compressibility parameters in the core of the dam parameters

	λ	к	comment	
	0.14 0.025	PI=32.		
Eine soil			WL = 32/0.73+13 = 57 (estimated from	
Fille Soli		0.025	Casagrande, 1947)	
fraction of the		0.025	Correlations using WL and PI : Biarez and	
core		Favre (1975), Fleureau and al. (2002), Favre et al.		
			(2002)	
Real soil of the	Real soil of the $\lambda_{real soil} = \lambda_{fine soil fraction} * \mu_{cl}$		$\lambda_{\rm realsoil} = \lambda_{\rm finesoilfraction} * \mu_{\rm cl}$	
core	0.035	0.006	$\kappa_{real \ soil} = \kappa_{fine \ soil \ fraction} * \mu_{cl}$	
Assumption 1	Assumption 1 $\mu_{cl} = 25\%$		$\mu_{cl} = 25\%$	
Real soil of the $\lambda_{real soil} = \lambda_{fine soil fraction} * \mu_{cl}$		$\lambda_{realsoil} = \lambda_{finesoilfraction} * \mu_{cl}$		
core	0.14	0.025	25 $\kappa_{\text{real soil}} = \kappa_{\text{fine soil fraction}} * \mu_{\text{cl}}$	
Assumption 2			$\mu_{cl} = 100\%$	

→ p'c = 250 kPa (W_{OPN} + 1%)

Dynamic analysis of aratozawa Dam | 2016

Construction

Skeleton compressibility parameters in the core of the dam parameters

Construction

Fluid compressibility

→ Prediction of pore pressure build-up in the core

Construction

$$c_f = \frac{1}{S_r} \cdot \frac{dS_r}{du_w} + c_w$$

Impoundement

Pore pressure set up in the numerical model

Construction

Elastic parameters

 $G_{\max} = \rho * V_s^2$

Values of V_s from Sawada and Takahashi (1975)

Depth z	Clay core V _s Clay core V		Saturated rockfill+	Unsaturated rockfill
	(lower bond)	(upper bond)	transition V _s	+ transition V_s
(m)	(m/s)	(m/s)	(m/s)	(m/s)
0-5m	$V_{s} = 210$		$V_{s} = 245$	
5-30m	$V_{-180} - 0.35$	V 140 - 0.34	$V_s = 250.z^{0.2}$	$V_{s} = 250.z^{0.2}$
>30m	v = 180.z	$v_s = 140.z$	$V_s = 200.z^{0.31}$	$V_s = 250.z^{0.2}$

Dynamic stage

Elastic parameters

$$G_{\max} = K_{\alpha} * \left(\frac{\sigma_3'}{p'_{ref}}\right)^{\alpha}$$
 Use of a power law with minor effective stress σ_3' in order to obtain a value of Gmax depending on the depht

Comparison between V_s from Sawada and Takahashi (1975) and V_s calculated from $G_{max}(\sigma'_3)$

Measured spectral ratio

Calculated spectral ratio

Estimation of pore pressure excess

Estimation of shear wave velocity Vs

p'c = 150 kPa - μ_{cl} = 100%

*** Vs measured ooo Vs_G calculated with distortion - Vs_Gmax calculated without distortion

Estimation of Settlements at the end of earthquake (before consolidation)

Effect of the occluded air

Conclusion

Dynamic analysis of aratozawa Dam | 2016

Conclusion

- Attenuation of acceleration at mid height and at the crest of the dam = hysteretic damping + irreversible plasticity during strong earthquake;
- u_w = the pore fluid compressibility (occluded air) + isotropic hardening in the fine soil fraction of the core during earthquake;
- >> G_{max} & V_s <==> ---- uw
- $V_s(t) = V_s(\gamma, p'(u_w))$
- Irreversible settlement = isotropic hardening during earthquake + differed settlement during dissipation of pore pressure

THANK YOU FOR YOUR ATTENTION

Dynamic analysis of aratozawa Dam | 2016

