International Symposium Qualification of dynamic analyses of dams and their equipments and of probabilistic assessment seismic hazard in Europe 31th August – 2nd September 2016 – Saint-Malo



# Coupled elasto-plastic dynamic response of dams



#### Context

#### Earthquake loss estimation



2 / 34

# **Global approach**

- Need for understanding mechanisms controlling induced damage in earthquake loss estimation (e.g. soil foundation, structures, dams, ...);
- Improve and validate traditional approaches and evaluation methods;
- Take into account the non linear soil behaviour;
- Use of numerical methods in order to facilitate the comprehension of the global problem via parametric analyses;
- Various uncertainties on the material properties, loading parameters and scenarios will be considered;
- Probabilistic analyses as a complement of conventional deterministic analyses will be used.





ECP's numerical tool

Numerical model

Conclusions



#### Outline

#### **Recorded signals**

**ECP's numerical tool** 

Numerical model

Conclusions



#### Aratozawa Dam



The 2008 Iwate-Miyagi Nairiku earthquake [Ohmachi and Taharz, 2011]



#### Aratozawa Dam



Plan and cross sections of the Aratozawa dam [Ohmachi and Taharz, 2011]

Gbr

-

| Event                 | Year | Location | $PGA\;[cm/s^2]$ |
|-----------------------|------|----------|-----------------|
| Southern Akita Pref   | 1996 | F1-A     | 28              |
|                       |      | T1-A     | 105             |
| Northern Miyagi Pref  | 1996 | F1-A     | 33              |
|                       |      | T1-A     | 114             |
| Northern Miyagi Pref  | 1996 | F1-A     | 30              |
|                       |      | T1-A     | 87              |
| Northern Miyagi Pref  | 2003 | F1-A     | 113.5           |
|                       |      | T1-A     | 365             |
| Southern Iwate Pref   | 2008 | F1-A     | 1023.8          |
|                       |      | T1-A     | 525.3           |
| Far E Off Miyagi Pref | 2011 | F1-A     | 102             |
|                       |      | T1-A     | 290.3           |

19 earthquake records tested





signals in A direction - 2008 Iwate-Miyagi Nairiku Earthquake









spectral ratio F1-T1- PGA = 30cm/s<sup>2</sup> - 1996 Northern Miyagi Pref f = 3.06 and 4.74 Hz

10/34



Short Time Fourier Transform (STFT) spectral ratio F1-T1 3.1 and 4.7 Hz - 1996 Northern Miyagi Pref.



Short Time Fourier Transform (STFT) spectral ratio F1-T1 2008 Southern Iwate Pref





Short Time Fourier Transform (STFT) spectral ratio F1-T1 ( $\approx 0.8$ ) 2.2 and 3.7 Hz - 2008 Southern Iwate Pref



| Event                      | $PGA\;[cm/s^2]$ | <i>f</i> <sub>1</sub> [Hz] | <i>f</i> <sub>2</sub> [Hz] |  |
|----------------------------|-----------------|----------------------------|----------------------------|--|
| Southern Akita Pref        | 28              | 2.91                       | 4.71                       |  |
| Northern Miyagi Pref       | 33              | 3.01                       | 5.21                       |  |
| Northern Miyagi Pref       | 30              | 3.06                       | 4.74                       |  |
| Southern Iwate Pref        | 1023.8          | 2.22*                      | 3.70*                      |  |
| * Computed between 35-50s. |                 |                            |                            |  |





#### ECP's numerical tool

Numerical model

Conclusions



13/34

# GEFDyn & Code\_Aster - ECP's numerical tool

#### The ECP's elastoplastic multi-mechanism model

#### [Aubry et al., 1982, Hujeux, 1985]

- The model is written in terms of effective stress,
- Coulomb type failure criterion,
- Critical state concept,
- Deviatoric primary yield surface of the k plane:  $f_k(\sigma, \varepsilon_v^{\rho}, r_k) = q_k \sin \phi'_{\rho\rho} \cdot p'_k \cdot F_k \cdot r_k$  $F_k = 1 - b \ln \left(\frac{p'_k}{\rho_c}\right)$  and  $p_c = p_{co} \exp(\beta \varepsilon_v^{\rho})$

Progressive friction mobilization with shear:  $r_k = r_k^{el} + \frac{\int_0^t e^{ip} dt}{a + \int_0^t e^{ip} dt}$  $a = a_1 + (a_2 - a_1) \alpha_k(r_k)$ 

- Roscoe's dilatancy law
- lsotropic yield surface:  $f_{iso} = |p'| d p_c r_{iso}$



# GEFDyn & Code\_Aster - ECP's numerical tool

#### Classification of the Elastoplastic model parameters [Lopez-Caballero et al., 2003]

|                                                 | Directly<br>measured *                                                   | Not-Directly<br>measured                                                   |
|-------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Elastic                                         | K <sub>ref</sub> , G <sub>ref</sub><br>n <sub>e</sub> , p <sub>ref</sub> |                                                                            |
| Critical State<br>and Plasticity                | $\phi_{pp}^{\prime},\ eta \  ho_{pc},\ d$                                | Ь                                                                          |
| Flow Rule and<br>Isotropic hardening            | $\psi$                                                                   | $a_1, a_2, lpha_\psi, \ m, c_{mon}$                                        |
| Threshold<br>domains                            |                                                                          | r <sup>ela</sup> , r <sup>hys</sup><br>r <sup>mob</sup> , r <sup>ela</sup> |
| * From : Triaxial, Resterned tests among others | sonant column, (                                                         | CPT, oedometric                                                            |



**ECP's numerical tool** 

Numerical model

Conclusions



16/34



- Construction stage of the dam and seismic loading,
- Two approaches for Pore-water pressure generation in this study,\*
  - Decoupled behaviour for the core and the upstream rockfill (effective stress),
  - Coupled behaviour for the core and the upstream rockfill,
- Dry condition is supposed for the downstream rockfill (total stress),



<sup>\*</sup> details in [Montoya-Noguera and Lopez-Caballero, 2016]



- Core  $\rightarrow$  non-linear elasto plastic model (ECP model)
- Core filter  $\rightarrow$  non-linear elasto plastic model (ECP model)
- Rockfill  $\rightarrow$  non-linear elasto plastic model (ECP model)
- $\blacktriangleright$  Bedrock  $\rightarrow$  infinitely rigid with absorbing elements \*
- \* details in [Montoya-Noguera, 2016]





• Core 
$$\rightarrow$$
  $V_s = 220 \cdot z^{0.35 *}$ 

- Core filter  $\rightarrow$   $V_s = 220 \cdot z^{0.35 *}$
- Rockfill  $\rightarrow$   $V_s = 250 \cdot z^{0.2 *}$
- $\blacktriangleright$  Bedrock  $\rightarrow$  infinitely rigid with absorbing elements
- \* adapted from [Ohmachi and Taharz, 2011]



Core and Core filter behaviour :



Simulated  $G/G_{max} - \gamma$  curves Remark : These curves are not an input of the model.



#### **Rockfill behaviour :**



Simulated  $G/G_{max} - \gamma$  curves Remark : These curves are not an input of the model.



Southern Akita Pref - 1996







20 / 34

















Southern Iwate Pref - 2008





Southern Iwate Pref - 2008





Southern Iwate Pref - 2008



STFT F1-T1-  $\mathsf{PGA}=1023.8\mathsf{cm}/\mathsf{s}^2$ 





Obtained co-seismic settlement, 13cm - Decoupled behaviour

Gor

Southern Iwate Pref - 2008



Obtained co-seismic settlement - GEFDyn



Southern Iwate Pref - 2008



27 / 34

Southern Iwate Pref - 2008



Obtained co-seismic settlement



E Off Miyagi Pref - 2011





# **Anderson Criteria**

| Number | Symbol | Similarity of:    | Band | Frequency limits [Hz] |
|--------|--------|-------------------|------|-----------------------|
| C1     | SDa    | Arias duration    | B1   | 0.05 - 0.1            |
| C2     | SDe    | Energy duration   | B2   | 0.1 - 0.2             |
| C3     | Sla    | Arias Intensity   | B3   | 0.2 - 0.5             |
| C4     | Slv    | Energy Integral   | B4   | 0.5 - 1.0             |
| C5     | Spga   | Peak Acceleration | B5   | 1.0 - 2.0             |
| C6     | Spgv   | Peak Velocity     | B6   | 2.0 - 5.0             |
| C7     | Spgd   | Peak Displacement | B7   | 5.0 - 15.0            |
| C8     | Ssa    | Response Spectra  | B8   | 0.05 - 15.0           |
| C9     | Sfs    | Fourier Spectra   |      |                       |
| C10    | С*     | Cross Correlation |      |                       |

#### **Goodness of fit criteria and Frequency Bands**

$$C_i(p_1, p_2) = 10 \exp\left\{-\left[\frac{(p_1 - p_2)}{\min(p_1, p_2)}\right]^2\right\} \qquad S = \frac{1}{8} \sum_{B=1}^8 \left(\frac{1}{10} \sum_{i=1}^{10} C_{i,B}\right)$$





#### Anderson criteria





31/34



**ECP's numerical tool** 

Numerical model

Conclusions



#### Conclusions

- Used non-linear soil behaviour model is able to represent accurately the recorded behaviour of the dam in the large range of accelerations and frequencies.
- "Half-space bedrock's boundary condition" allows to simulate the borehole condition found at the gallery level.
- The condition assumed to define the initial state of all materials could be used as a first approach to simulate the dam behaviour.
- The non-linear behaviour of the dam is concentrated principally at the base of the core material.



# Thank you for your attention Dõmo arigatõ gozaimas[u]



#### Aubry, D., Hujeux, J.-C., Lassoudière, F., and Meimon, Y. (1982).

A double memory model with multiple mechanisms for cyclic soil behaviour. In International symposium on numerical models in geomechanics, pages 3–13. Balkema



#### Hujeux, J.-C. (1985).

Une loi de comportement pour le chargement cyclique des sols. In *Génie Parasismique*, pages 278–302. V. Davidovici, Presses ENPC, France.



#### Lopez-Caballero, F., Modaressi, A., and Elmi, F. (2003).

Identification of an elastoplastic model parameters using laboratory and in-situ tests. In Deformation Characteristics of Geomaterials, pages 1183–1190. Eds. H. Di Benedetto et al., A.A. Balkema, ISBN 9058096041.



#### Montoya-Noguera, S. (2016).

Assessment and mitigation of liquefaction seismic risk: Numerical modeling of their effects on SSI. PhD thesis, École CentraleSupélec, France.



Effect of coupling excess pore pressure and deformation on nonlinear seismic soil response. Acta Geotechnica, 11(1):191–207.



#### Ohmachi, T. and Taharz, T. (2011).

Nonlinear earthquake response characteristics of a central clay core rockfill dam. Soils and Foundations, 51(2):227–238.



#### Seed, H. B., Wong, R. T., Idriss, I. M., and Tokimatsu, K. (1986).

Moduli and damping factors for dynamic analyses of cohesionless soils. Journal of Geotechnical Engineering - ASCE, 112(11):1016–1032.

