Contractions comité français des barrages et réservoirs International Symposium Qualification of dynamic analyses of dams and their equipments and of probabilistic assessment seismic hazard in Europe 31th August – 2nd September 2016 – Saint-Malo

Masayuki KASHIWAYANAGI

Session 5: Qualification of seismic analyses of concrete dams

CHARACTERISTICS OF PREDOMINANT FREQUENCY OF AN EXISITING ARCH DAM

SUMMARY

1.INTRODUCTION

MOTIVATION IKEHARA DAM EARTHQUAKE MONITORING

2.DYNAMIC BEHAVIOR

ACCELERATION RESPONSE DOMINANT FREQUENCY MICROTREMOR MEASUREMENT DYNAMIC SIMULATION

3.CONCLUSIONS

MOTIVATION

- A dynamic behavior of an existing arch dam of 111 m high during earthquakes are examined using the earthquake monitoring data,
 - To identify <u>the dam behavior in a sound</u> <u>condition</u>
 - To elaborate <u>the management criteria</u> for detecting abnormalities in the dam in terms of deviation from the sound behavior
 - To evaluate <u>the current dynamic properties</u> of the dam for safety assessment of the dam

IKEHARA DAM

Concrete arch dam for hydropower (Completed in 1964) Dam height : 111 m, Crest length : 460 m Characterisitics of predominant frequaency

of an existing arch dam | 2016

Location

EARTHQUAKE MONITORING

Seismometer(JEP-4/

(1) About *90 events*have been monitored
since 1987.
(2) The max.
acceleration was
recorded at 30 gal and *240 gal* at the
foundation and the dam
crest, respectively.

DOMINANT FREQUENCY OF AN ARCH DAM

 $f_1(h,\theta) = c_0 + c_1(h/H)^{\beta} + \frac{c_2}{\sqrt{\theta^* - \theta}} + e$ After Kondo et. al. 2015

Where, $f_1(h,\theta)$: predominant frequency, h: water depth of the reservoir, H: full depth of the reservoir, β : Parameter(=3.0), θ : ambient temperature, θ^* : ambient temperature corresponding to zero opening of the transverse joint (40°C is adopted.), c_0, c_1, c_2 : constant, e: residual 8

DEPENDENCY ON WATER DEPTHAND TEMPERATURERegression curve, 0°C15°C

ESTIMATION OF DOMINANT FREQUENCY USING REGRESSION FORMULA

MICROTREMOR MEASUREMANT

COMPARISON BETWEEN MICROTREMOR MEASUREMENT AND EARTHQUAKE MONITORING

DYNAMIC SIMULATION

Elastic modulus of the dam	35000 MN/m ²	40000 MN/m ²
Eigen value simulation	Done	Done
Earthquake wave response (Dam-reservoir interaction)	Done	
Pulse wave response (Added mass)	Done	Done

Numerical model

Symmetric mode

Material test E_{static} =44000MN/m² for extracted specimen after 50 years

CONCLUSIONS (1)

- The dynamic characteristics of the existing arch dam is clarified.
 - Acceleration response is linear to the magnitude of the earthquake excitation.
 - Dominant frequency depends significantly on the reservoir water depth and the ambient temperature.
 - The dominant frequency is well formulated in terms of influential parameters.
- These characteristics are beneficial to the soundness management of the dam.

CONCLUSIONS (2)

- It is considered that the dominant frequency attribute to the dynamic properties of the dam.
- Therefore, the current properties can be evaluated by the dynamic simulation of which results coincide to the monitored dominant frequency.
- Such examination is essential to the safety assessment of dams during large earthquakes.
- Microtremor measurement is effective in these examination where no earthquake monitoring data is available.

THANK YOU FOR YOUR ATTENTION