International Symposium Qualification of dynamic analyses of dams and their equipments and of probabilistic assessment seismic hazard in Europe 31th August – 2nd September 2016 – Saint-Malo

Patrick Lignier

SAFETY ASSESSMENT OF BENI-HAROUN DAM UNDER SEISMIC LOADING

SUMMARY

- **1.PRESENTATION OF BENI-HAROUN DAM**
- **2.SEISMIC HAZARD**
- **3.PSEUDO-STATIC CACULATIONS**
- **4.SIMPLIFIED APPROACHES**
- **5.ELASTIC FINITE ELEMENTS MODELLING**
- **6.IRREVERSIBLE DISPLACEMENTS**
- **7.ESTIMATION OF POST SEISM UPLIFT**
- 8. CONCLUSION

RCC GRAVITY DAM

- Height : 118 m
- Lenght : 710 m
- Upstream slope : Vertical
- Downstream slope : 0,8H/1V

Spillway

- Discharge 13 700 m³/s
- Free OGEE weir 114 m

Hydraulics level

- Full Supply level 200m
- Maximum Water level 214, 8 m
- Crest level 216,3 m

MAIN DATES

•	Works	1997 - 2003
•	Start of the impounding	2004
•	Additional grouting and drainage to control uplift	2005-2011
•	Full supply level	2012

COUPE PLOT NON DEVERSANT

REGIONAL GEOLOGY

- Complexe regional context
- Displaced and superposed Nappe de charriage
- Presence of karsts

SITE GEOLOGY

- Upstream : Marly formations of Eocene age
- Foundation : Syncline limestone marl (The southern flank of the syncline flushes in the reservoir about 300 m u/s from the dam)
- Downstream : Black marly formation of Paleocene age

MATERIAL CHARACTERISTICS - DAM

•	Dynamic Young modulus	30 Gpa
•	Poisson ration	0,2
•	Density	2,35 t/m3
•	Cohesion	0
•	Friction angle	40°

MATERIAL CHARACTERISTICS - FOUNDATION

•	Dynamic Young modulus	15 Gpa
•	Poisson ration	0, 33
•	Cohesion	0
•	Friction angle	45°

UPLIFT

2.SEISMIC HAZARD

SEISMIC HAZARD

TABELLOUT DAM

- Discovery of active faults during the construction of Tabellout dam
- Re-evaluation of the regional seismic hazard

SEISMIC HAZARD

BENI HAROUN DAM

Fastbaucha	Return period [years]	PGA [g]	
Eartnquake		Old Values	New Values
Operating Basis	200	0.17	0.25
Earthquake	500	-	0.36
Safety Evaluation	1 000	0.3	0.45
Earthquake	10 000	-	0.69

SEISMIC HAZARD

Accelorogramms

- 8 accelerogramms records selected from Pacific Eartquake Engineering Research international data base which match with the Beni-Haroun site spectra
- 3 near fields accelogramms and 4 far fields accelogramms
- 1 local accelogramm (Boumerdes)

	Accelerogram	Year	Magnitude Mw
	Loma Prieta	1989	6.93
Near field	Cape Mendocino	1992	7.01
	Kobe	1995	6.9
	Loma Prieta (Coyote Lake Dam)	1989	6.93
Far field	Cape Mendocino (Loleta Fire Station)	1992	7.01
	Duzce (Mudurnu)	1999	7.14
	Cape Mendocino (Shelter Cove Airport)	1992	7.01
Local	Boumerdès	2003	6.8

3.PSEUDO-STATIC CALCULATIONS

PSEUDO-STATIC CALCULATIONS

LOADING	UPLIFT	SAFETY FACTOR
FSL	MEASURED	1.77
FSL + SBE	MEASURED	1.09
FSL + SEE	MEASURED	0.31
FSL	TRIANGULAR	1.34

4.SIMPLIFIED APPROACH

SIMPLIFIED APPROACH

TARDIEU SIMPLIFIED APPROACH - ASSUMPTIONS

- Dam is considered as a simple resonator (traingular prism) with two degrees of freedom (transaltion and bending parallel to the dam axis)
- The height of the prism « H » is the height of the dam
- The dam is founded on rigid rock
- The effects of eathquake ban-to-bank hhorizpntal coponent is neglected

TARDIEU SIMPLIFIED APPROACH - RESULTS

- Empty reservoir N = 0,23 S/H N = 4,5 Hz
- Full reservoir N = 0,17 S/H N = 3,3 Hz

SIMPLIFIED APPROACH

CHOPRA SIMPLIFIED APPROACH

- Empty reservoir N= 3,9 Hz
- Full reservoir N = 3,3 Hz

4.ELASTIC FINITE ELEMENTS MODELLING

2D ELASTIC FE MODELLING

MODEL : Rigid foundation

Assumptions

- Foundation : Massless
- Damping (Dam & foundation) : 7% (OBE) 10% (SEE)
- Westergaard attached massed

2D ELASTIC FE MODELLING

Natural frequencies

	Empty reservoir	Full reservoir
FE model 1	3.8	3.3
Tardieu	4.5	3.3
Chopra	3.9	3.3

Acceleration evolution – Amplification ratio : 4 - 8

2D ELASTIC FE MODELLING

MAXIMUM STRESSES

- Compressive stresses 6 MPa
- Tensile stresses

5.IRREVESIBLE DISPLACEMENTS

IRREVERSIBLE DISPLACEMENTS

- NEWMARK'S APPROACH IRREVERSIBLE DISPLACEMENTS
 - O.B.E 0 2 mm
 - S.E.E 5-40 mm

IRREVERSIBLE DISPLACEMENTS

NON LINEAR MODELLING – 2 D EF CALCULATIONS

Assumptions

- Foundation : Massless
- Damping (Dam & foundation) : 10% (SEE)
- Westergaard attached massed
- Contact friction behaviour law at hte interface between dan body and foundation (c=0 , ϕ =45°)

IRREVERSIBLE DISPLACEMENTS

- NON LINEAR MODELLING 2 D EF CALCULATIONS
 - Accelegramm : MENDOCINO « Shelter Cove Airport «
 - Irreversible displacement : 21 mm (Peak 25 mm)

6.ESTIMATION OF POST SEISM UPLIFT

ESTIMATION OF POST SEISM UPLIFT

• TWO ASSUMPTIONS CAN BE MADE

- The movement occurs in the plane of contact between the concrete and the rock foundation (one crack)
- The movement affects a certain thickness of the rock foundation (several cracks)

ESTIMATION OF POST SEISM UPLIFT

- Estimation of the drain seepage in one crack at the contact dam/foundation
 - Crack opening e : 15% of sliding due to dilatancy
 - Flow velocity (turbulent very rough flow regime) $v = V = (4\sqrt{eg} \ln(\frac{1.9}{R}))\sqrt{J_*}$
 - Drain discharge : Q = 6.v.e

Irreversible displacement	40 mm	21 mm
e (mm)	6	4
V (m/s)	4,8	3,5
U/S drain : Q (I/s)	170	65
D/S drain : Q (I/s)	60	22

ESTIMATION OF POST SEISM UPLIFT

- Estimation of the drain seepage located in several cracks within the rock foundation
 - Number of cracks : 10
 - Crack opening e: 15% of sliding due to dilatancy
 - Equivalent permeability (Maini & Hocking) K = e3 . F. g/(12 Vc . B. C)

Irreversible displacement	40 mm	21 mm
e (mm)	0,6	0,3
K (m/s)	2,7 10 ⁻⁵	3,9 10 ⁻⁶
Q I/s	24	3

• The drains are not saturated.

7.CONCLUSION

CONCLUSION

- RE-EVALUATION OF THE DYNAMIC BEHVIOUR OF BENI-HAROUN DAM
- FIRSTLY, SIMPLIFIED METHODS TO IDENTIFY THE FREQUENCIES OF THE DAM
- SECONDLY, A FE 2D MODEL TO ASSESSMENT THE ACCELERATION AND STRESSES EVOLUTION
- THIRDLY, NEWMARK'S APPROACH AND A FE 2D NON LINEAR MODEL TO ESTIATE THEIRREVERSIBLE DISPLCAMENTS
- FINALY, ESTIMATION OF THE INCREASE OF DRAIN DISCHARGE AND CAPACITY OF THE DRAINAGE SYSTEM TO CONTROL THE UPLIFT POST SEISM

THANK YOU FOR YOUR ATTENTION