International Symposium Qualification of dynamic analyses of dams and their equipments and of probabilistic assessment seismic hazard in Europe 31th August – 2nd September 2016 – Saint-Malo

Frédéric ANDRIAN.

Session : Discussion on qualification of seismic analysis of dams Effects of radiative boundary conditions on seismic analysis of gravity dams

SUMMARY

- 1. Reference dam and records
- 2. Used calculation methodology
- 3. Conclusions of the maximum crest acceleration calibration (2014)
- 4. Modeling methodology of interactions (2015)

Dam / Foundation Dam / Reservoir

5. Calibration of the low frequency response (2016)

2D calculations 3D calculations

6. Qualifications of methods (2016)

Sliding limit accelerations – non-linear time history analysis Use of spectral transfer functions: qualification of simplified methods

7. Main conclusions

Reference dam and records

- Tagokura dam
 - Concrete gravity
 - Height: 145m
 - Crest Length: 462m
 - L/H ratio = 3.2:1

- 5 sets of 3D seismographs
 - El. 399 ~ Low level gallery
 - El. 514.8 ~ Crest

Reference dam and records

2004 Niiagata- Chuetsu Earthquake

- PGA
 - ✤ ~ El. 399 max acceleration
 - ✤ 0.9 m/s²
- Maximum crest acceleration
 \$4.5m/s²

Used calculation methodology

FLAC / FLAC3D, Itasca

- Explicit finite difference codes
- Foundation with mass and stiffness

Radiative boundary conditions

- About 10 dams calculated at design or diagnostic stage
- Already used for Nuclear Power Plant facilities and geotechnical analyses
- Non-linear calculations (if necessary)
 - Interface logic (DEM) at the dam / foundation contact

Maximum crest acceleration calibration (2014)

Calculation methodologies

- Standard method
 - Fixed foundation boundary conditions (reflective)
- Complete method
 - Radiative boundary conditions

Max. crest acceleration crest results

- Standard method
 - Required damping ratio: from 8.5% to 15%
 - From 15% to 5% damping ratio: maximum crest acceleration divided by a factor 3.
- Complete method
 - Required damping ratio < 5%</p>

Targets

- Model more accurately interactions
 - Dam / Foundation
 - Dam / Reservoir
 - (but also Reservoir / Foundation)

- Use of logarithmic decrement
- Suitable for damping ratio < 25-50%

$$\delta = \frac{1}{n} \ln \frac{x(t)}{x(t+nT)}, \qquad \zeta = \frac{1}{\sqrt{1 + (\frac{2\pi}{\delta})^2}}.$$

nT T: period

- Dam / foundation interaction
 - Foundation with mass and stiffness
 - Radiative boundary conditions
 - Free-field conditions at the lateral boundaries (incl. Reservoir)
 - Semi-infinite conditions at the bottom of the model
 - ✤ No wave trapping
 - Input at the model bottom
 - Propagation toward the upper parts

- Dam / foundation interaction Results
 - 10 12% equivalent damping ratio at low frequencies
 - Higher damping ratio at higher frequencies
 - Out of the range of logarithmic decrement method (>20-25%)
 - To be assessed by means of spectral method for example
 - Flexible foundation => higher damping ratio
 - Consistent with Pecker et al.

Effects of radiative boundary conditions on seismic analysis of gravity dams | 2016

0.60 0.50 0.40 0.30 0.20

0.00

s = @_.h / V,

- Dam / Reservoir interaction Analytic formulation (Ref. VIERA RIBERIO et al.)
 - Hydrodynamic pressure field

$$\nabla^2 p = \frac{1}{c^2} \cdot \frac{\partial^2 p}{\partial t^2}$$

• Hypothesis: harmonic solution

$$p(x, y, t) = P(x, y)e^{-i\omega t}$$
$$\nabla^2 P + \left(\frac{\omega}{c}\right)^2 P = 0$$

• Boundary conditions

S4:
$$p = 0$$

S1: $\frac{\partial p}{\partial x} = -\rho U$
S3: $p = 0$
H
S2: $\frac{\partial p}{\partial y} = 0$

- Dam / Reservoir interaction Analytic formulation (Ref. VIERA RIBERIO et al.)
 - Reservoir Eigen frequency: $f_R = \frac{c}{4H}$
 - ♦ If $f_{dam} < f_R$: Real solution ~ added mass regime
 - ➢ If incompressible water (c→∞), Westergaard solution (very specific case!)
 - ♦ If $f_{dam} = f_R$: Resonance
 - ♦ If $f_{dam} > f_R$: Complex solution ~ wave propagation

- Dam / Reservoir interaction Validation of the numerical model
 - Water modeled as elements
 - Lagrangian formulation in FLAC/FLAC3D (mesh deformation with the material deformation)
 - ✤ vs. Eulerian formulation (fixed mesh but material motion) ~ used in CFD
 - Nearly incompressible material (v = 0.5)
 - Volumetric locking to be avoided with caution
 - Use of standard linear/cubic elements inaccurate
 - A few possible solutions to overcome the overstiffness
 - Reduced integration (FEM)
 - Mixed Discretization scheme
 - * ...
 - Mixed Discretization scheme used in FLAC/FLAC3D
 - ✤ Isotropic and Deviatoric parts of stresses and strains calculated <u>separately</u>

- Dam / Reservoir interaction Validation of the numerical model
 - $R = f_{dam}/f_R$

✤ If R > 1, ~ 2% supplementary damping ratio at low frequencies

- Foundation / Dam / Reservoir interaction Overall results
 - Dam / foundation interaction
 - 10 12% supplementary damping ratio
 - Dam / reservoir interaction

 $rac{R}{R} = f_{dam}/f_{R}$

- ✤ If R > 1, ~ 2% 3% supplementary damping ratio ~ large dams
- If R< 1, added masses regime ~ small dams</p>
 - Westergaard distribution = very specific case (rigid dam + compressible water)
 - Westergaard distribution = not always the most conservative
- Total radiation damping (water + foundation) : ~ 15% for stiff foundation
 - Consistent with the findings of 2014 work

- 2D calculations
 - 1st step: blind calculation
 - 0 % material damping
 - E_{dam} = 23.04 GPa, E_{found} = 20 GPa (JCOLD data)

2D calculations

- 2nd step: Increased moduli (~3D effect)
- 0 % damping
- $E_{dam} = 40 \text{ GPa}, E_{found} = 35 \text{ GPa}$

- 2D calculations
 - 3rd step: Improvement of reservoir geometry
 - 0 % damping
 - $E_{dam} = 40 \text{ GPa}, E_{found} = 35 \text{ GPa}$

Effects of radiative boundary conditions on seismic analysis of gravity dams | 2016

Frequency (Hz)

2D calculations

- 4th step: Horizontal + Vertical input components
 - Better (best) record fitting : 3.9 Hz frequency due to water vertical oscillation
 - Effect of reservoir modeling (reservoir attached to foundation)?
 - Does it work as well with FE-BE method?

3D calculations – Blind results

- 0% material damping, 3D input
- E_{dam} = 23.04 GPa, E_{found} = 20 GPa (JCOLD data)
 - Satisfactory but less fitting than 2D calculations
 - Calculated spectrum = 1.10 to 1.30 times the recorded one
 - Lower calibration quality of the water-related frequency

- **3D** calculations Possible explanation of lower calibration quality of 3D analysis
 - Channel effect of the reservoir (model) vs. Real geometry (left bank)
 - Better representation of the reservoir by the 2D model
 - Infinite width toward the out-of-plane direction

- Sliding limit PGAs Non-linear time history 2D analysis
 - Coulomb friction law at dam / foundation interface
 - Friction angle = 45° + free opening
 - Sensitivity analysis with regards to cohesion
 - Drainage efficiency = 2/3 at the location of galleries
 - 5% material damping (dam only)
 - Input = H + V scaled with an increasing factor until sliding occurs
 - Relative horizontal displacements monitored at three locations
 - ✤ U/S toe
 - Center of the base
 - ✤ D/S toe

Sliding limit PGAs – Non-linear time history 2D analysis

Horizontal relative displacement at dam/foundation interface

• Sliding limit PGA with pseudo-static analysis = 0.31 g.

pseudo-static coefficients = 2/3 H + 1/5 V

 9 mm U/S toe relative displacement for PGA = 0.7g phi = 45°

Cohesion (kPa)	Sliding limit PGA (g)
0	0.34
100	0.38
200	0.44
300	0.55

Use of spectral transfer functions: qualification of simplified methods

Calc.spectrum at El.515 Left hand spectral transfer function: ۲ Calc.spectrum at El.399

Used for the calibration of the model with the records

Right hand spectral transfer function: Calc.spectrum at El.515

Input

Used for assessment of the Eigen frequencies of the system

Use of spectral transfer functions: qualification of simplified methods

- First mode: 2.2Hz ≠ Predominant mode: 3.9Hz
- First mode usually used as input for simplified methods

Is this always relevant?

Main conclusions (1/2)

- Validation of the use of radiative boundary conditions by means of recorded data
 - Up to 12 % supplementary damping for stiff bedrock
 - Acknowledgment to JCOLD
- 0-1% required material damping ratio for Tagokura dam with the used input
 - Consistent with the magnitude of the input
 - No need for fictitious (and difficult to calibrate) additional material damping
- Validation of the reservoir model for dam / reservoir interaction
 - Westergaard distribution = very specific case, may not be suitable for large dams and not necessarily the most pessimistic
- Use of vertical component = best calibration results so far (Major finding)
 - May depend on reservoir modeling
 - French guidelines to be updated?
- Reservoir geometry in 3D analysis to be further investigated

Main conclusions (2/2)

Non-linear analysis

- Pessimistic results as the excavation « step » not modeled
- Still reassuring results as low expected relative displacement if any
- If sliding, drainage discharge to be assessed as per Tardieu et al.
- Method to be calibrated with a dam subjected to stronger earthquake (e.g. Kasho dam)

Predominant mode \neq First mode (Major finding)

- Due to the effect of the reservoir
- What about the input of simplified methods?
- Field of application to be clarified

THANK YOU FOR YOUR ATTENTION