

International Symposium Qualification of dynamic analyses of dams and their equipments and of probabilistic assessment seismic hazard in Europe 31th August – 2nd September 2016 – Saint-Malo

> David GRAVELEINE Vincent LHUILLIER

MODAL ANALYSIS OF GATES FEM Coupled with FSI Analysis Compared to On-Field Measurements

SUMMARY

1. INTRODUCTION

Context and objectives

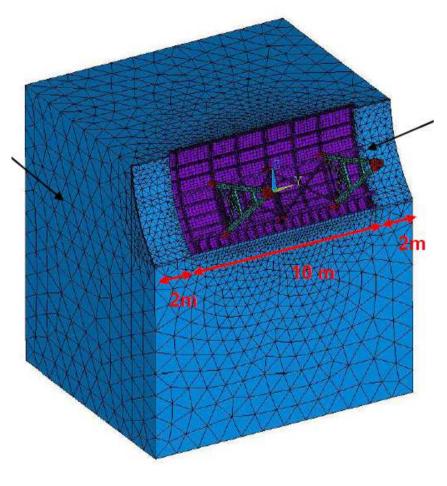
2. CALCULATION METHOD OF GATE INCLUDING SEISMIC LOADS

Conventional approach More realistic approach (including dynamic response of gate)

3. DYNAMIC BEHAVIOR OF GATE – QUALIFICATION OF THE NUMERICAL APPROACH

FEM modal analysis including Fluid Structure Interaction On-field measurements

4. SUMMARY OF MAIN RESULTS OF MODAL-SPECTRUM ANALYSIS with FSI calculation


5. CONCLUSION AND FURTHER WORKS

1. Introduction

- This work is an extension of the work presented in 2014 and 2015 on the "Spillway Gates at Top of Dam : Evaluation of Mechanical Resistance to Earthquakes"
- Focus on study case "segment gate H72"
- Checking the **integrity** of structure
- Earthquake = accidental load case (SES spectra)
- Analysis criteria
 - Ultimate limit state analysis
 - Rules : DIN 19704 (Hydraulic Steel Structures Design Analysis)

2. Calculation Method including Seismic Loads

CONVENTIONAL APPROACH (STATIC EVALUATION)

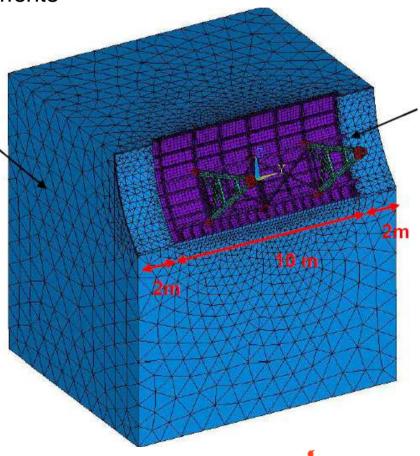
Considered Loads :

- Self weight (P)
- Hydrostatic pressure (Q1)
- Hydrodynamic pressure (A1)

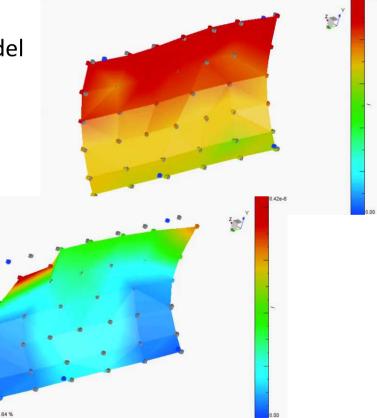
 -> using Westergaard's formula
 (hydrodynamic pressure acting on gates due to dams behavior gates considered as a
 rigid body)
- MORE REALISTIC APPROACH (INCLUDING DYNAMIC RESPONSE OF DAM & GATE) Considered Loads :
 - Self weight (P)
 - Hydrostatic pressure (Q1)
 - Hydrodynamic pressure (A1)
 -> using Westergaard's formula (hydrodynamic pressure acting on gates due to dams behavior)

Dynamic response of immerged gates (A2) – spectrum analysis with FSI analysis

LOADS COMBINATION (ACCIDENTAL LOAD CASE):


 $1.35 \times P + 1.35 \times 0.8 \sum (Qi + Ai)$

3. Dynamic Behavior of Gate : Qualification of the Numerical Approach


- FEM modal analysis including Fluid Structure Interaction calculation
 - Gate : Beam and shell structural elements
 - Fluid : 3-D Acoustic Fluid elements
 - Boundary conditions:
 - Gate Blocking displacements at trunnions & lower edge
 - Fluid
 - Symmetry
 - Free surface (P = Patm)
 - Absorption

- Method
 - For one set of accelerometer locations => transfer functions measurement from impact hammer (load cell) to accelerometers
 - Perform measurements for every impact locations and accelerometer locations
 - Once all measurements are done
 - synthetize TF to build an experimental model
 - Eigen frequencies
 - Eigen vectors
 - Estimation of the modal damping
- Comparisons with numerical models
 - MAC matrix
 - Build cost functions to tune models
- Two types of modes
 - Structural modes
 - Rigid body modes

Gate Modal Analysis – comparison between FEM coupled FSI analysis and on-field measurements

Equipment and Set Up

- Sensors impact hammer Data acquisition
- 13 accelerometers PCB 356A17
- Hammer PCB type 086D20 (1Kg)
- Siemens LMS SCADAS SCM05 40 inputs

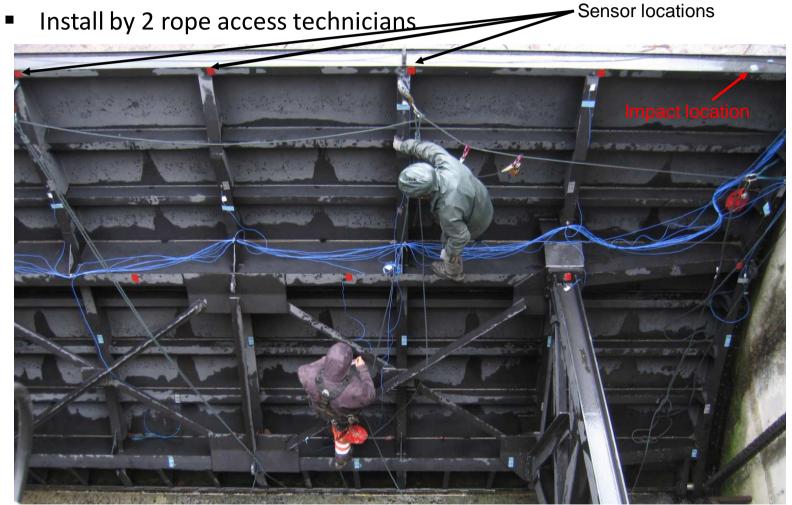
Studied configurations

- Gate opened and suspended by its chains
- Gate closed no water
- Gate closed water at mid-level
- Gate closed water at high-level
- Organization
 - 1 day for install
 - 2,5 days measurements
 - 0,5 day deinstall

Measurement team

- Installation: 2 rope access technicians
- Measurements: 1 engineer + 1 technician

- Sensors and impact points
 - 39 points on the gate (3 sets of 13 locations) Red Black Cyan
 - 10 points on the arms (1 set of 10 locations) yellow
 - 4 impact points (2 directions each time) green

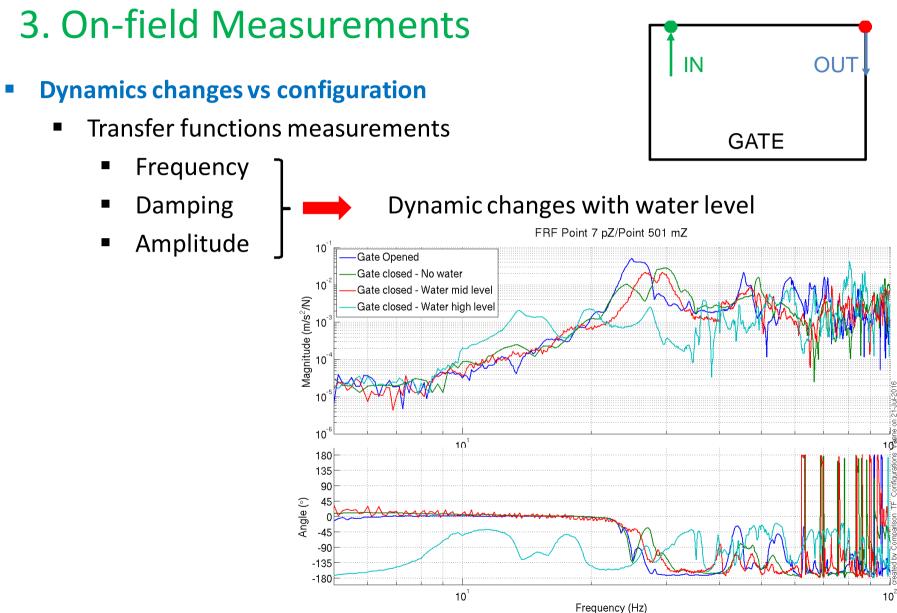


Gate Modal Gate Modal Gate Age and a comparison between FEM coupled FSI analysis and on-field measurements

Install

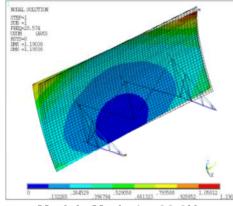
9

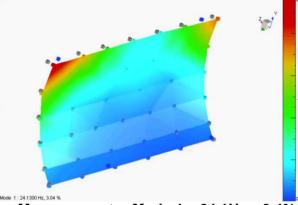
- Measurements
 - Measurements by 2 rope access technicians



- Set Up
 - Water level stability during measurements

************* 11

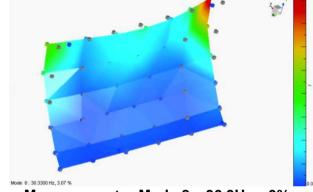



Gate Modal Analysis – comparison between FEM coupled FSI analysis and on-field measurements

************* 12

Results – Gate closed – No water

- Comparison with numerical model
 - Similar mode shapes


Model - Mode 1 - 20,6Hz

Measurements - Mode 1 – 24,1Hz – 3,4<mark>%</mark>

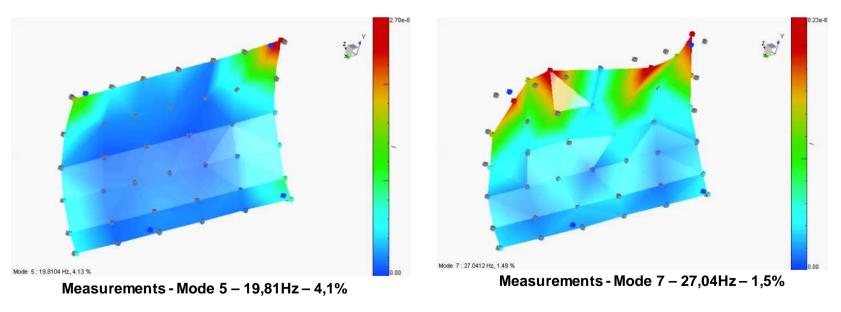
- Boundary conditions
 - Model: simply supported at the lower edge of the gate
 - Need to consider :
 - the preload at the lower edge
 - Lateral seals

Increase the eigen frequencies of the first modes

- Modal damping
 - From 1% to 3%

Measurements - Mode 8 – 30,3Hz – 3%

Mode - Frequency (Hz) – error (%) vs measurements			
Identified modes	Simulations vs Meas (error)		
Mode 1 - 24.1Hz	Mode 1 - 20,6Hz – 17%		
Mode 2 - 24.6Hz	Mode 2 - 21,2Hz – 14%		
	Mode 3 - 25,6Hz		
	Mode 4 - 26,4Hz		
	Mode 5 - 28,6Hz		
Mode 4 - 27.8Hz	Mode 6 - 29,1Hz – 5%		
Mode 8 - 30.3Hz	Mode 7 - 30,6Hz – 1%		


- Results Gate closed High Water Level
 - Comparison with numerical models Westergaard vs FSI FEM analysis
 - Overestimation of the added mass by the Westergaard approach
 - Better estimation of modal behavior with the Fluid-structure interaction model

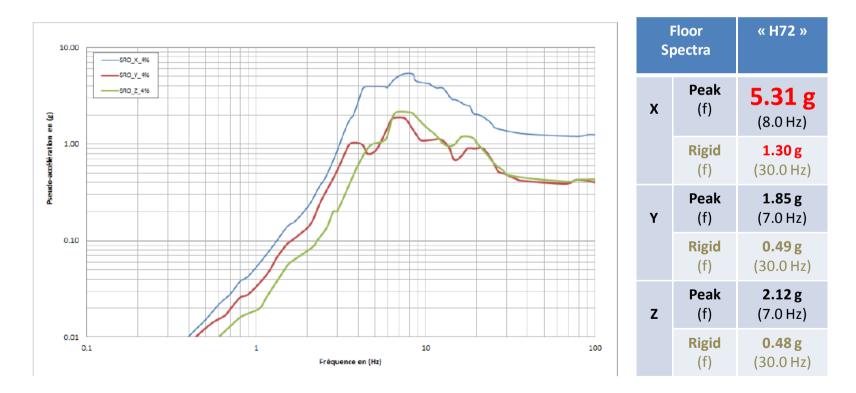
Measurements	Westergaard	Fluid-structure
Mode 1 - 10.1Hz	4.0Hz	10.0Hz
Mode 2 - 13.3Hz		
Mode 3 - 15.2Hz	4.5Hz	14.4Hz
Mode 4 - 19.0Hz		23.0Hz
Mode 5 - 19.8Hz	6.7Hz	
Mode 6 - 23.4Hz		
Mode 7 - 27.0Hz		
Mode 8 - 29.8Hz		

- Results Gate closed High Water Level
 - Modal damping ratios
 - From 1,6% and 4,5% for structural modes
 - Above 10% for suspension modes
 - Overall increase with water level
 - Modal damping ratios depend on mode shapes

- Conclusions experiments
 - 1-week experiment
 - 4 configurations tested
 - Comparison model vs experiments
 - Gate closed no water: need to improve the boundary conditions at the lateral and lower edges of the gate (seals and preload)
 - Gate closed high water level:
 - Westegaard approach overestimates the added mass
 - Fluid-structure interaction model gives eigen frequencies in good agreements with measurements

Tuning the model might be necessary

Damping ratios


- From 1 to 3% when gate « in air »
- From 1,5% to 4,5% when gate is « in water ». Modal damping seems to depend on mode shapes
- Above 10% for suspension modes

4. Summary of the Main Results of FEM Modal-Spectrum analysis with FSI Calculation

- Seismic load
 - Soil spectra : Earthquake Safety Assessment
 - Floor spectra : calculated at the dam-gate interfaces

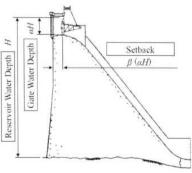
4. Summary of the Main Results of FEM Modal-Spectrum Analysis with FSI Calculation

Reaction forces

			« H72 »
Reaction Forces	PP	(P)	91 kN
	Pstat	(Q1)	1 053 kN
	P hydrodyn.	(A1)	927 kN
	Spectrum analysis	(A2)	± 2 620 kN
	r ^(*) =		≈ 3.5

(*) : r = ratio (accidental situation / normal situation) for weighted values

- Structural strain Stress
 - « Classical Elastic criteria » are not respected,
 - Local plastifications
 - Buckling criteria are not respected (gate arms)
 - ⇒ Need to conduct an elastoplastic analysis to conclude on the mechanical strength of the gate (rate of plastic deformation seems acceptable)
 - ⇒ Need to determine which mode of instability has to be considered : buckling or excess of plastic deformation


5. Conclusion and Further Works

MODAL ANALYSIS

- Gate **does not have a rigid behavior** within the bandwidth of an earthquake $f_{gate in air} \approx 24 \text{ Hz}$ $f_{gate in water} \approx 10 \text{ Hz}$ (\approx peak of floor spectra)
- FSI analysis is better suited than analysis with added masses : mass of water and distribution must be adjusted (as fair as possible) for each natural frequencies
- Fluid-structure interaction model gives eigen frequencies in good agreements with measurements.

STRESS ANALYSIS

- Complexity of stress analysis (elastic vs elastoplastic) and design criteria must be adapted to the amplitude of the considered earthquake.
- For the studied gate, seismic stresses (SES spectra) do not seem acceptable.
 Some mechanical reinforcements should be considered.
- This study was conducted on a unit case. It must be extended to other test cases to qualify the proposed calculation method.
- Some ways have to be still studied as the use of the "set back" (cf publication of Y. NAKAYAMA)

***?edf** 19

THANK YOU FOR YOUR ATTENTION