Session 5: Qualification of seismic analyses of concrete dams

Characterization of the dynamic behavior of an arch dam by means of forced vibration tests
SUMMARY

1. Introduction
 Dynamic characterization of concrete dams
 Forced vibration tests

2. The Baixo Sabor project
 Arch dam
 Dynamic testing and monitoring systems

3. Modeling approach
 DEM modeling with 3DEC
 Modeling of the forced vibration tests

4. Comparison of experimental and numerical results
Dynamic characterization of concrete arch dams

- **Continuous dynamic monitoring**
 - Ease of application; provides continuous response
 - Low level of environmental excitation

- **Forced vibration tests**
 - Higher level of excitation; known action
 - More costly and time consuming

- **Seismic monitoring**
 - Triggered by seismic events
 - Characterizes seismic action and structural response
Forced vibration testing

- **Methodology**
 - Application to the structure of a dynamic action with a prescribed amplitude and frequency
 - Action usually applied with eccentric mass vibrator which imposes a sine wave force
 - Structural response measured at representative locations
 - Identification of model parameters (frequencies, shapes, damping, ...)

![Image of a vibration testing setup](image)
Discrete frequency scanning

Frequency response function for a measurement point of the structure obtained by discrete frequency scanning

Displacement/force transfer function for MDOF system

\[H_{ij}(w) = \sum_{k=1}^{N} \frac{(\phi_i)_k (\phi_j)_k}{(w_k^2 - w^2) + i(2\xi \omega_k w_k w)} \]
Baixo Sabor project (EDP)

Owner: EDP
Construction started: July 2008
First filling completed (arch dam): April 2016
Arch dam – General layout

- **Arch dam**
 - 2 reversible groups
 - Power: 2x70 MW
 - Net energy production: 230 GWh

- **Design by EDP**
Arch dam

- **Dimensions**
 - Height: 123 m
 - Crest length: 505 m
 - Central cantilever thickness:
 - Min.: 6 m
 - Max.: 31.6 m
 - Reservoir:
 - Max. volume: 1275 hm3
 - Max. area: 3100 ha
Dynamic monitoring systems
(currently being installed and tested)

- Continuous dynamic monitoring
 - 20 radial accelerometers for continuous dynamic monitoring

- Seismic monitoring system
 - 3D accelerometers to be triggered in case of earthquake

Seismic action
Structural response
Seismic monitoring system – Remote stations

![Map of seismic monitoring system with remote stations and concrete dam markers.](image)

- **Remote station** markers are shown in red.
- **Concrete dam** markers are shown in blue.

Arch dam forced vibration testing | 2016
Arch dam – Forced vibration tests

- Forced vibration tests to be performed before and after reservoir filling
- First set of tests performed in Jan 2015 for a reservoir level 38.5 m below crest (about 70% of max. water height)
- Reservoir filling completed in April 2016; second set of tests recently performed
Plan of installed equipment during forced vibration tests

- Measuring points
- Shaker

- Shaker

- Measuring points
Experimental results – First set of forced vibration tests

<table>
<thead>
<tr>
<th>Mode</th>
<th>Freq. (Hz)</th>
<th>Modal damping (%)</th>
<th>Modal configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.75</td>
<td>1.0</td>
<td>≈ Symmetric</td>
</tr>
<tr>
<td>2</td>
<td>2.95</td>
<td>1.0</td>
<td>≈ Anti-symmetric</td>
</tr>
<tr>
<td>3</td>
<td>3.87</td>
<td>1.1</td>
<td>≈ Symmetric</td>
</tr>
<tr>
<td>4</td>
<td>4.46</td>
<td>0.6</td>
<td>≈ Anti-symmetric</td>
</tr>
<tr>
<td>5</td>
<td>5.26</td>
<td>0.6</td>
<td>≈ Symmetric</td>
</tr>
<tr>
<td>6</td>
<td>5.88</td>
<td>1.0</td>
<td>≈ Anti-symmetric</td>
</tr>
<tr>
<td>7</td>
<td>6.22</td>
<td>1.4</td>
<td>≈ Anti-symmetric</td>
</tr>
<tr>
<td>8</td>
<td>6.69</td>
<td>0.6</td>
<td>≈ Symmetric</td>
</tr>
<tr>
<td>9</td>
<td>7.81</td>
<td>0.9</td>
<td>≈ Anti-symmetric</td>
</tr>
<tr>
<td>10</td>
<td>8.42</td>
<td>1.8</td>
<td>≈ Anti-symmetric</td>
</tr>
</tbody>
</table>

Mode 1 (2.75 Hz)

Mode 2 (2.95 Hz)

Mode 3 (3.87 Hz)
Numerical modeling

- **3DEC code**
 - 3DEC a DEM code mostly used in rock mechanics modeling
 - At LNEC, it is used in
 - Analysis of dam foundation failure modes
 - Earthquake analysis of dams
 - Masonry block dynamics

- **Arch dam model**
 - Cantilever blocks represented by 20-node FE brick elements
 - Contraction joints (with nonlinear behavior)

- **Rock mass (if represented)**
 - Polyhedral deformable blocks with internal tetrahedral FE mesh
Typical applications of 3DEC

- **Failure modes involving rock mass (static analysis)**
 - (Lemos 2012)
 - Permanent displacement contours (max. 0.12 m)

- **Earthquake analysis considering rock mass joints (time domain explicit dynamic analysis)**
 - Time evolution of slip on rock joints
Numerical model for first set of forced vibration tests

Dam
- Elastic blocks
- 20-node FE elements
- Elastic contraction joints
- Foundation nodes fixed

Reservoir effect
- Added mass technique
- For the low water level, the hydrodynamic effect is not very significant

<table>
<thead>
<tr>
<th>Dam material</th>
<th>Contraction joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus</td>
<td>35.0 GPa</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.20</td>
</tr>
<tr>
<td>Density</td>
<td>2400 kg/m³</td>
</tr>
<tr>
<td>Normal stiffness</td>
<td>25.0 GPa/m</td>
</tr>
<tr>
<td>Shear stiffness</td>
<td>10.0 GPa/m</td>
</tr>
</tbody>
</table>
Comparison of experimental and numerical results (i)

- **MAC matrix**
 (Modal Assurance Criterion)

<table>
<thead>
<tr>
<th>Numerical Mode (Hz)</th>
<th>Experimental modes (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.75</td>
</tr>
<tr>
<td>2.75</td>
<td>0.77</td>
</tr>
<tr>
<td>2.96</td>
<td>0.03</td>
</tr>
<tr>
<td>3.96</td>
<td>0.09</td>
</tr>
<tr>
<td>4.46</td>
<td>0.10</td>
</tr>
<tr>
<td>5.15</td>
<td>0.01</td>
</tr>
<tr>
<td>5.39</td>
<td>0.07</td>
</tr>
<tr>
<td>6.07</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Mode 1 exp. 2.75 Hz

Mode 1 num. 2.75 Hz
Comparison of experimental and numerical results (ii)

Mode 2 exp.
2.95 Hz

Mode 2 num.
2.96 Hz

Mode 3 exp.
3.87 Hz

Mode 3 num.
3.96 Hz

Mode 4 exp.
4.46 Hz

Mode 4 num.
4.46 Hz

Mode 5 exp.
5.26 Hz

Mode 5 num.
5.39 Hz
Comparison of frequency response functions obtained from the forced vibration testing (EVF) and the numerical model (NUM)

- Numerical results obtained by time domain analysis reproducing the test procedure (assumed mass-proportional viscous damping, 1.1% at 2.95 Hz)
Second set of tests – Full reservoir
Numerical model with representation of reservoir

- **3DEC reservoir model**
 - Cundall’s mixed discretization elements
 - similar to FLAC-3D elements
 - double overlay of 5 tetrahedra
 - averaging of volumetric strain
 - Absorbing boundaries at far end

- **Determination of numerical frequencies and mode shapes**
 - Random vibration applied to the dam
 - Identification of frequencies and mode shapes from response time records at the measurement points
Second set of test – Full reservoir
Comparison of experimental and numerical frequencies

<table>
<thead>
<tr>
<th>Mode</th>
<th>Experimental</th>
<th>Numerical Reservoir model</th>
<th>Numerical Added-masses (50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.44</td>
<td>2.48</td>
<td>2.50</td>
</tr>
<tr>
<td>2</td>
<td>2.57</td>
<td>2.65</td>
<td>2.78</td>
</tr>
<tr>
<td>3</td>
<td>3.34</td>
<td>3.46</td>
<td>3.71</td>
</tr>
<tr>
<td>4</td>
<td>3.94</td>
<td>3.96</td>
<td>4.20</td>
</tr>
<tr>
<td>5</td>
<td>4.78</td>
<td>4.77</td>
<td>4.88</td>
</tr>
</tbody>
</table>

- **Numerical models for full reservoir**
 - Reservoir model with water elements
 - Dam only with added-masses
 - reduction factor of 0.5 applied to the added-masses
Second set of test – Full reservoir
Experimental and numerical (reservoir model) mode shapes

Mode 1 exp.
2.44 Hz

Mode 1 num.
2.48 Hz

Mode 2 exp.
2.57 Hz

Mode 2 num.
2.65 Hz

Mode 3 exp.
3.34 Hz

Mode 3 num.
3.46 Hz
Concluding remarks

• The Baixo Sabor arch dam has been equipped with dynamic monitoring systems which are intended to provide data for the characterization of the dynamic behavior under environmental and seismic actions.

• Forced vibration tests were performed with a low reservoir level, and, recently, after the first filling.

• The analysis of the first set of tests by means of a numerical model showed a good agreement with the frequencies and mode shapes obtained in the experiments.

• As data from the dynamic monitoring systems becomes available, it will allow a full comparison with the forced vibration test results and the numerical representations.
THANK YOU FOR YOUR ATTENTION